

# **Conference Schedule**

| Date                          | Time        | Event                                                     |
|-------------------------------|-------------|-----------------------------------------------------------|
|                               | 09:00-10:30 | Opening Ceremony                                          |
|                               | 10:30-11:30 | Keynote Speech 1: Prof. Carlo Cecati                      |
|                               | 11:30-12:30 | Keynote Speech 2: Prof. Shahrokh Farhangi                 |
| 2 Feb. 2021<br>(14 Bahman 99) | 14:00-16:00 | Session D1: DC-DC Converters                              |
| (14 Daminan 99)               | 14:00-16:00 | Session G: Microgrids                                     |
|                               | 16:00-18:00 | Session V: Hybrid/Electric Vehicles                       |
|                               | 10.00–18.00 | Session I: Inverter Structures                            |
|                               | 08:00-10:00 | Session D2: DC-DC Converters                              |
|                               | 08.00-10.00 | Session E1: Electric Machines and Drives                  |
|                               | 10:00-12:00 | Session C1: Control of Power Electronic Converters        |
|                               | 10:00-12:00 | Session E2: Electric Machines and Drives                  |
| 3 Feb. 2021                   | 12:00-14:00 | Session A1: Application of Power Electronic Converters    |
| (15 Bahman 99)                |             | Session T: Wireless Transmission and Power Systems        |
|                               | 14:00-16:00 | Session M1: Multi-Level Inverters                         |
|                               |             | Session A2: Application of Power Electronic Converters    |
|                               | 16:00-18:00 | Session D3: DC-DC Converters                              |
|                               |             | Session R: Resonant Converters and Energy Storage Systems |
|                               | 08:00-10:00 | Session D4: DC-DC Converters                              |
|                               | 00.00-10.00 | Session C2: Control of Power Electronic Converters        |
| 4 Feb. 2021<br>(16 Bahman 99) | 10:00-12:00 | Session M2: Multi-Level Inverters                         |
|                               | 10.00-12.00 | Session A3: Application of Power Electronic Converters    |
|                               | 12:00-14:00 | Session E3: Electric Machines and Drives                  |
|                               | 14.00 16.00 | Session D5: DC-DC Converters                              |
|                               | 14:00-16:00 | Session C3: Control of Power Electronic Converters        |
|                               | 16:00-18:00 | Closing Ceremony                                          |

| Торіс                               | Papers | Sessions | Торіс                                                 | Papers | Sessions |
|-------------------------------------|--------|----------|-------------------------------------------------------|--------|----------|
| DC-DC Converters<br>(D)             | 30     | 5        | Control of Power Electronic<br>Converters (C)         | 18     | 3        |
| Multi-Level Inverters<br>(M)        | 14     | 2        | Microgrids<br>(G)                                     | 6      | 1        |
| Inverter Structures (I)             | 6      | 1        | Application of Power<br>Electronic Converters (A)     | 18     | 3        |
| Electric Machines and<br>Drives (E) | 18     | 3        | Wireless Transmission and<br>Power Systems (T)        | 6      | 1        |
| Hybrid/Electric<br>Vehicles (V)     | 6      | 1        | Resonant Converters and<br>Energy Storage Systems (R) | 7      | 1        |



# Workshops

## Monday, 1 Feb. 2021 (13 of Bahman 99)

| Date                                   | Time            | Торіс                                                                                                          | Presenter                                                                                                              |
|----------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                        | 08:00-<br>10:00 | Sensorless Application of Predictive Control in<br>Drives                                                      | J. Rodriguez<br>Universidad Andres Bello<br>C. Garcia<br>Universidad de Talca<br>A. Davari<br>Shahid Rajaee University |
|                                        | 10:00-          | Modeling of distributed power generation sources electronic converters in Matlab software                      | J. Behkesh<br>Ardabil Province Electrical<br>Distribution Co.                                                          |
| 1 Feb.<br>2021<br>(13<br>Bahman<br>99) | 12:00           | Implementation Hardware-in-the-loop<br>Simulation to Control of Power Microgrids                               | S. Roozbehani<br>University of Khaje Nasir aldin<br>Toosi Jahad Association                                            |
|                                        | 12:00-<br>14:00 | Power Quality Improvement in Distribution<br>Systems Using Inverter-based DERs (IBDERs)                        | <b>R. Rezvanfar</b><br>University of Tabriz                                                                            |
|                                        |                 | The effects of widespread use of power-<br>electronic based DG source on the electric<br>network power quality | M. Youhannayee<br>Gilan Province Electrical<br>Distribution Co.                                                        |
|                                        | 14:00-<br>16:00 | Power Quality in transition from traditional to<br>modern power Grids                                          | Y. Naderi<br>University of Strathclyde                                                                                 |
|                                        | 16:00-<br>18:00 | Electromagnetic Magnetic (EMI) Reduction<br>Techniques in WBG Power Electronic<br>Converters                   | Mostafa Abarzadeh<br>SmartD Technologies,<br>Montreal, Canada                                                          |



## Day 1: Tuesday, 2 Feb. 2021 (14 of Bahman 99)

|                               |        | ]                 | Day 1: Tuesday, 2 February 2021 (14 of Bahman 1399)                                                                                                                       |                 |
|-------------------------------|--------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Session                       | Chairs | Paper<br>ID       | Title                                                                                                                                                                     | Time            |
|                               |        | pedstc12-<br>1002 | A New Topology of High Step-Up Non-Isolated DC-DC Converter with<br>Modifying in VMC                                                                                      | 14:00-<br>14:20 |
| rters                         |        | pedstc12-<br>1006 | Design and Implementation of a Transformerless High Step-Up DC-DC<br>Converter Based on Conventional Boost Converter and Voltage Multiplier<br>Cells                      | 14:20-<br>14:40 |
| D1<br>DC-DC Converters        |        | pedstc12-<br>1009 | Full Soft-Switching Ultra-High Gain DC/DC Converter Using Three-Winding<br>Coupled-Inductor                                                                               | 14:40-<br>15:00 |
| C-DC                          |        | pedstc12-<br>1015 | Common Grounded High step up Z-Source DC-DC Converter with Coupled<br>Inductors                                                                                           | 15:00-<br>15:20 |
| D(                            |        | pedstc12-<br>1016 | A Non-isolated High Step-Up DC-DC Converter Recommended for<br>Photovoltaic Systems                                                                                       | 15:20-<br>15:40 |
|                               |        | pedstc12-<br>1022 | New Single-Switch Non-isolated Boost DC-DC Converter with Free Input<br>Current Ripple                                                                                    | 15:40-<br>16:00 |
|                               |        | pedstc12-<br>1033 | Event-Triggered Fully-Distributed Secondary Control of Islanded DC<br>Microgrids Using Pre-defined Event Condition                                                        | 14:00-<br>14:20 |
|                               |        | pedstc12-<br>1049 | A Localized–Protection Scheme for Ring DC Microgrids using Distribution-<br>Sensitive Poverty Index                                                                       | 14:20-<br>14:40 |
| grids                         |        | pedstc12-<br>1052 | A Model Predictive Control for a Four-Leg Inverter in a Stand-Alone<br>Microgrid under Unbalanced Condition                                                               | 14:40-<br>15:00 |
| G<br>Microgrids               |        | pedstc12-<br>1076 | Delay and General Multiplicative Noise-Resilient Secondary Frequency and<br>Voltage Control for an Autonomous Microgrid                                                   | 15:00-<br>15:20 |
| N                             |        | pedstc12-<br>1099 | Application of online empirical mode decomposition and continuous wavelet<br>transform for Power Smoothing in Low voltage Microgrid with Battery<br>Energy Storage System | 15:20-<br>15:40 |
|                               |        | pedstc12-<br>1153 | Optimal Placement and Sizing of Energy-related Devices in Microgrids Using<br>Grasshopper Optimization Algorithm                                                          | 15:40-<br>16:00 |
|                               |        | pedstc12-<br>1043 | Selective Utilized Phase Number of Multiphase Induction Motors Strategy to<br>Enhance Electric Vehicles' Drive Range                                                      | 16:00-<br>16:20 |
| nicles                        |        | pedstc12-<br>1053 | Control of In-Wheel Hub Direct Drive PMSM for Hybrid Electric Vehicle                                                                                                     | 16:20-<br>16:40 |
| ic Veł                        |        | pedstc12-<br>1148 | Performance Improvement of Control System for Wireless Charging of<br>Electric Vehicle                                                                                    | 16:40-<br>17:00 |
| V<br>Electr                   |        | pedstc12-<br>1147 | Grid Synchronization of Bidirectional Electric Vehicle Chargers Using<br>Second Order Generalized Integrator based Phase Lock Loop                                        | 17:00-<br>17:20 |
| V<br>Hybrid/Electric Vehicles |        | pedstc12-<br>1139 | Implementation of Burp Pulse Charging in Inductive Power Transfer Systems<br>with LCC-Series Compensating Topology for Electric Vehicle Charger<br>Application            | 17:20-<br>17:40 |
|                               |        | pedstc12-<br>1111 | A Multiport Isolated DC-DC Converter for Plug-in Electric Vehicles Based<br>on Combination of Photovoltaic Systems and Power Grid                                         | 17:40-<br>18:00 |
| I<br>Inverter Structures      |        | pedstc12-<br>1014 | Single-Phase Two-Stage Transformerless Grid-Connected Inverter for<br>Photovoltaic Applications                                                                           | 16:00-<br>16:20 |
|                               |        | pedstc12-<br>1071 | Using Grid Connected PUC Inverter with Robust Control Against Hybrid<br>DG's Oscillation                                                                                  | 16:20-<br>16:40 |
|                               |        | pedstc12-<br>1079 | High Step up Switched-Capacitor Quasi-Switched Boost Inverters                                                                                                            | 16:40-<br>17:00 |
|                               |        | pedstc12-<br>1120 | Transformerless Grid-Connected Asymmetric PV Inverter with Constant<br>CMV and Reactive Power Injection Capability                                                        | 17:00-<br>17:20 |
|                               |        | pedstc12-<br>1113 | Half-Bridge Trans-Z-Source Inverter with Continuous Input Current                                                                                                         | 17:20-<br>17:40 |
|                               |        | pedstc12-<br>1008 | Hyper-Plane Sliding Mode Control of Non-Minimum Phase Grid-Connected<br>Zeta Converter                                                                                    | 17:40-<br>18:00 |



# Day 2: Wednesday, 3 Feb. 2021 (15 of Bahman 99)

|                                      |        | Day               | 2: Wednesday, 3 February 2021 (15 of Bahman 1399)                                                                                                                                         |                 |
|--------------------------------------|--------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Session                              | Chairs | Paper ID          | Title                                                                                                                                                                                     | Time            |
|                                      |        | pedstc12-<br>1025 | A Quadratic High Step-up DC-DC Boost Converter Based on Coupled<br>inductor with Single Switch and Continuous Input Current                                                               | 8:00-<br>8:20   |
| rters                                |        | pedstc12-<br>1027 | A Non-Isolated Bidirectional DC-DC Converter with Wide Voltage<br>Conversion Ratio and Soft-Switching Capability                                                                          | 8:20-<br>8:40   |
| D2<br>DC-DC Converters               |        | pedstc12-<br>1039 | A Three-Winding Coupled-Inductor High Step-Up Boost Converter with<br>an Active-Clamp Circuit                                                                                             | 8:40-<br>9:00   |
| DC (                                 |        | pedstc12-<br>1040 | A New High Step-Up Interleaved LLC Converter                                                                                                                                              | 9:00-<br>9:20   |
| DC                                   |        | pedstc12-<br>1045 | A Dual Active Bridge Converter with Full ZVS Range Using a Buck-<br>Boost Converter                                                                                                       | 9:20-<br>9:40   |
|                                      |        | pedstc12-<br>1056 | Double-Input/Single-Output Zeta Converter                                                                                                                                                 | 9:40-<br>10:00  |
| es                                   |        | pedstc12-<br>1030 | Modeling of linear switched reluctance motors using fuzzy clustering method                                                                                                               | 8:00-<br>8:20   |
| Drive                                |        | pedstc12-<br>1042 | Model-Free Finite Set Predictive Voltage Control of Induction Motor                                                                                                                       | 8:20-<br>8:40   |
| es and                               |        | pedstc12-<br>1050 | Optimal Design of a Permanent Magnet Synchronous Motor Using the<br>Cultural Algorithm                                                                                                    | 8:40-<br>9:00   |
| E1<br>Electric Machines and Drives   |        | pedstc12-<br>1054 | Multi-Objective Optimization of Permanent Magnet Synchronous Motor<br>Based on Sensitivity Analysis and Latin Hypercube Sampling assisted<br>NSGAII                                       | 9:00-<br>9:20   |
| lectric                              |        | pedstc12-<br>1058 | Multi-objective Optimization of a Permanent Magnet Synchronous Motor<br>for Gearless Elevator                                                                                             | 9:20-<br>9:40   |
| E                                    |        | pedstc12-<br>1059 | Investigations of Magnet Shape Impacts on Coreless Axial-Flux PM<br>Machine Performances                                                                                                  | 9:40-<br>10:00  |
| ters                                 |        | pedstc12-<br>1004 | MPPT Controller Design Using TLBO Algorithm for Photovoltaic<br>Systems Under Partial Shading Conditions                                                                                  | 10:00-<br>10:20 |
| C1<br>of Power Electronic Converters |        | pedstc12-<br>1013 | Improved Model Predictive Control Methods with Natural Capacitor<br>Voltage Balancing for the Four Level-Single Flying Capacitor (4L-SFC)<br>Inverter                                     | 10:20-<br>10:40 |
| ctroni                               |        | pedstc12-<br>1019 | A Deadbeat Controller Design for Single-Phase Active Power Filters<br>Based on Forward-Backward Discretization                                                                            | 10:40-<br>11:00 |
| C1<br>er Ele                         |        | pedstc12-<br>1028 | Performance Improvement of Model Predictive Control for Modular<br>Multilevel Converters by Auto-regulating the Weighting Factor Value                                                    | 11:00-<br>11:20 |
|                                      |        | pedstc12-<br>1031 | Stabilization of DC / DC Converter with Constant Power Load using<br>Exact Feedback Linearization Method based on Backstepping Sliding<br>Mode Control and Nonlinear Disturbance Observer | 11:20-<br>11:40 |
| Control                              |        | pedstc12-<br>1060 | Computation Reduction for Balancing the Voltages of the DC-link<br>Capacitors in 3-level Inverter by Using Redundant Switching States                                                     | 11:40-<br>12:00 |
| /es                                  |        | pedstc12-<br>1080 | Design Optimization of Tubular Linear Induction Motor Using Genetic<br>Algorithm and Response Surface Methodology                                                                         | 10:00-<br>10:20 |
| E2<br>Electric Machines and Drives   |        | pedstc12-<br>1093 | Static Eccentricity Fault Detection in Salient and Non-Salient<br>Synchronous Generators Using Harmonic Components                                                                        | 10:20-<br>10:40 |
|                                      |        | pedstc12-<br>1098 | Comparison Study of Active Flux based Sliding-Mode Observer and PLL<br>based Sliding-Mode Observer Sensorless Control of SynRM                                                            | 10:40-<br>11:00 |
|                                      |        | pedstc12-<br>1115 | Direct Thrust Force Control (DTFC) of Optimized Linear Induction Motor<br>with Super Twisting Sliding Mode Controller (STSMC)                                                             | 11:00-<br>11:20 |
|                                      |        | pedstc12-<br>1117 | Sensorless flying start method for starting of induction motors                                                                                                                           | 11:20-<br>11:40 |
|                                      |        | pedstc12-<br>1140 | Robust Design of BLDC Motor for Jetboard Application                                                                                                                                      | 11:40-<br>12:00 |
| A<br>1<br>A                          |        | pedstc12-<br>1003 | Design and Implementation of an Adjustable 400 Hz Single-Phase Power<br>Frequency Inverter                                                                                                | 12:00-<br>12:20 |

### 12<sup>th</sup> Annual Power Electronics, Drive Systems and Technologies (PEDSTC 2021)



| Image: second system         Image: se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                         |  |                   |                                                                                                                        |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|-------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|
| Image: Second State        |                           |  | pedstc12-<br>1010 | Single-Phase Dynamic Voltage Restorer Based on AC-AC Trans-Z-<br>Source Converter for Voltage Sag and Swell Mitigation | 12:20-<br>12:40 |
| Pedstc12-<br>IO44         Performance Analyses of a Three-Port Converter for Post-Fault<br>IO44         I33<br>IO44           pedstc12-<br>IO48         A new Resonant Domestic Induction Heating converter with High Power<br>IO48         IO47           pedstc12-<br>IO48         Bridgeless High Voltage Gain Active PFC Rectifiers with<br>IO70         IO37           pedstc12-<br>IO70         A Single-Phase Wireless Power Transfer System with a High-Frequency<br>IO55         IO42           IO70         A Single-Phase Wireless Power Transfer System with a High-Frequency<br>IO55         IO22           pedstc12-<br>IO65         Maximum Power Per Current Control for Dynanic WPT Systems         IO22           pedstc12-<br>IO88         Wireless Power Transfer System for Unmanned Aerial Vehicle<br>IO32         IO33           pedstc12-<br>IO42         A Primary Side CCS-MPC Controller for Constant Current/Volkel<br>IO42         IO43           pedstc12-<br>IO42         Private Investors Participation in Long-Term Distribution Network<br>IO62         IO33           pedstc12-<br>IO42         Private Investors Participation in Long-Term Distribution Network<br>IO62         IO34           pedstc12-<br>IO42         Hybrid Switched-Capacitor 9-Level Boost Inverter         I443           pedstc12-<br>IO46         A Boost Switched-Capacitor 9-Level Boost Inverter         I443           pedstc12-<br>IO46         Design and Analysis of a New Multilevel Inverter with Reduced Number         I443           IO46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |  |                   |                                                                                                                        | 12:40-<br>13:00 |
| Image: statistic statis        |                           |  |                   | Performance Analyses of a Three-Port Converter for Post-Fault                                                          | 13:00-<br>13:20 |
| status         pedstc12-<br>1070         Bridgeless High Voltage Gain Active PFC Rectifiers with<br>Positive/Negative Output and Low Semiconductor Count<br>144         13:4<br>Positive/Negative Output and Low Semiconductor Count<br>144           using construction         pedstc12-<br>1065         A Single-Phase Wireless Power Transfer Systems with a High-Frequency<br>AC Link Converter in the Secondary for Three-Phase Applications<br>12:2<br>Pedstc12-<br>1065         12:2<br>Pedstc12-<br>1085           pedstc12-<br>1142         A Primary Side CCS-MPC Controller for Constant Current/Voltage<br>Charging Operation of Series-Series Compensated Wireless Power<br>Transfer Systems         13:0<br>Pedstc12-<br>Pedstc12-<br>1062           pedstc12-<br>1168         Private Investors Participation in Long-Term Distribution Network<br>Planning         13:2<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-           pedstc12-<br>1026         Hybrid Switched-Capacitor 9-Level Boost Inverter         14:3<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-           pedstc12-<br>1026         A Boost Switched-Capacitor 9-Level Boost Inverter         14:3<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-           pedstc12-<br>Pedstc12-<br>Notel Participation of Dual Z-source based Hybrid 2/3 Level<br>1057         15:5<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-           pedstc12-<br>Notel Participation of Dual Z-source based Hybrid 2/3 Level<br>1057         15:5<br>Pedstc12-<br>Pedstc12-<br>Notel Neutrer         15:5<br>Pedstc12-<br>Pedstc12-<br>Notel Neutrer           pedstc12-<br>Nosed Neutrer         Nullilevel Inverter with Reduced Number<br>15:2<br>Pedstc12-<br>Nosed Neutrer         15:5<br>Pedstc12-<br>Pedstc12-<br>Pedstc12-<br>Nosed Neutrer         15:6<br>Pedstc12-                                                                                                                                                                                                                           |                           |  | -                 |                                                                                                                        | 13:20-<br>13:40 |
| Image: Construct of the secondary for Three-Phase Applications         12:0           A Single-Phase Wireless Power Transfer System with a High-Frequency<br>AC Link Converter in the Secondary for Three-Phase Applications         12:1           Image: Construct of the secondary for Three-Phase Applications         12:1           Image: Construct of the secondary for Three-Phase Applications         12:1           Image: Construct of the secondary for Three-Phase Applications         12:1           Image: Construct of the secondary for Three-Phase Applications         12:1           Image: Construct Operation of Secondary for Three-Phase Applications         12:1           Image: Construct Operation of Secondary for Three-Phase Applications         12:1           Image: Construct Operation of Secondary for Three-Phase Applications         12:1           Image: Construct Operation of Secondary for Three-Phase Applications         12:1           Image: Construct Operation of Secondary for Three-Phase Applications         12:1           Image: Construct Operation of Secondary for Three-Phase Applications         12:1           Image: Construct Operation of Secondary for Three-Phase Applications         12:1           Image: Construct Operation of Secondary for Three-Phase Applications         13:3           Image: Construct Operation of Secondary for Three-Phase Applications         13:3           Image: Construct Operecondary fore Secondary for Three-Phase Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |  |                   | Bridgeless High Voltage Gain Active PFC Rectifiers with                                                                | 13:40-<br>14:00 |
| State         1168         Assessment and Improvement         1440           1026         Hybrid Switched-Capacitor 9-Level Boost Inverter         1440           1026         Hybrid Switched-Capacitor 9-Level Boost Inverter         1440           1046         Design and Analysis of a New Multilevel Inverter Using Quasi-Resonant         1442           1046         Design and Analysis of a New Multilevel Inverter with Reduced Number         1443           1047         of Switching Devices         1550           pedstc12-         Design and Analysis of a New Multilevel Inverter with Reduced Number         1550           pedstc12-         Modeling and Simulation of Dual Z-source based Hybrid 2/3 Level         1550           1057         Inverter         1552           pedstc12-         A Multilevel Converter Based on Cascaded Flying Cells with High         1552           pedstc12-         Nested Neutral Point Clamped Converter Based DSTATCOM with         1544           1067         Mixed-Sequence Reactive Current Compensation Capability         1660           1083         Continuous Input-current Buck-Boost DC-DC Converter         1442           1097         Using Continuous Input-current Buck-Boost DC-DC Converter         1442           1127         Using Continuous Input-current Buck-Boost DC-DC Converter         1442           1160 </td <th>ver</th> <th></th> <td>pedstc12-</td> <td>A Single-Phase Wireless Power Transfer System with a High-Frequency</td> <td>12:00-<br/>12:20</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ver                       |  | pedstc12-         | A Single-Phase Wireless Power Transfer System with a High-Frequency                                                    | 12:00-<br>12:20 |
| State         1168         Assessment and Improvement         1440           Pedstc12-<br>1026         Hybrid Switched-Capacitor 9-Level Boost Inverter         1440           Pedstc12-<br>1046         A Boost Switched-Capacitor Multilevel Inverter Using Quasi-Resonant         1442           Pedstc12-<br>1046         Design and Analysis of a New Multilevel Inverter with Reduced Number         1444           1047         of Switching Devices         1550           pedstc12-<br>1057         Modeling and Simulation of Dual Z-source based Hybrid 2/3 Level         1550           pedstc12-<br>1067         A Multilevel Converter Based on Cascaded Flying Cells with High         1552           pedstc12-<br>1067         Nested Neutral Point Clamped Converter Based DSTATCOM with         1544           1074         Mixed-Sequence Reactive Current Compensation Capability         1660           1083         An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter         1657           1127         Using Continuous Input-current Buck-Boost DC-DC Converter         1442           1127         Using Quasi Open-Loop Grid-Synchronization Technique         1557           pedstc12-<br>1160         Single Phase Active Power Filter Control Under Distorted Grid Voltage         1442           1127         Using Quasi Open-Loop Grid-Synchronization Technique         1557           pedstc12-<br>1160         Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd Pov                    |  | pedstc12-         |                                                                                                                        | 12:20-<br>12:40 |
| State         1168         Assessment and Improvement         1440           Pedstc12-<br>1026         Hybrid Switched-Capacitor 9-Level Boost Inverter         1440           Pedstc12-<br>1046         A Boost Switched-Capacitor Multilevel Inverter Using Quasi-Resonant         1442           Pedstc12-<br>1046         Design and Analysis of a New Multilevel Inverter with Reduced Number         1444           1047         of Switching Devices         1550           pedstc12-<br>1057         Modeling and Simulation of Dual Z-source based Hybrid 2/3 Level         1550           pedstc12-<br>1067         A Multilevel Converter Based on Cascaded Flying Cells with High         1552           pedstc12-<br>1067         Nested Neutral Point Clamped Converter Based DSTATCOM with         1544           1074         Mixed-Sequence Reactive Current Compensation Capability         1660           1083         An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter         1657           1127         Using Continuous Input-current Buck-Boost DC-DC Converter         1442           1127         Using Quasi Open-Loop Grid-Synchronization Technique         1557           pedstc12-<br>1160         Single Phase Active Power Filter Control Under Distorted Grid Voltage         1442           1127         Using Quasi Open-Loop Grid-Synchronization Technique         1557           pedstc12-<br>1160         Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sion aı<br>ns             |  | -                 | Wireless Power Transfer System for Unmanned Aerial Vehicle                                                             | 12:40-<br>13:00 |
| State         1168         Assessment and Improvement         1440           Pedstc12-<br>1026         Hybrid Switched-Capacitor 9-Level Boost Inverter         1440           Pedstc12-<br>1046         A Boost Switched-Capacitor Multilevel Inverter Using Quasi-Resonant         1442           Pedstc12-<br>1046         Design and Analysis of a New Multilevel Inverter with Reduced Number         1444           1047         of Switching Devices         1550           pedstc12-<br>1057         Modeling and Simulation of Dual Z-source based Hybrid 2/3 Level         1550           pedstc12-<br>1067         A Multilevel Converter Based on Cascaded Flying Cells with High         1552           pedstc12-<br>1067         Nested Neutral Point Clamped Converter Based DSTATCOM with         1544           1074         Mixed-Sequence Reactive Current Compensation Capability         1660           1083         An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter         1657           1127         Using Continuous Input-current Buck-Boost DC-DC Converter         1442           1127         Using Quasi Open-Loop Grid-Synchronization Technique         1557           pedstc12-<br>1160         Single Phase Active Power Filter Control Under Distorted Grid Voltage         1442           1127         Using Quasi Open-Loop Grid-Synchronization Technique         1557           pedstc12-<br>1160         Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T<br>l'ransmiss<br>Syster |  | 1                 | Charging Operation of Series-Series Compensated Wireless Power                                                         | 13:00-<br>13:20 |
| State         1168         Assessment and Improvement         1440           Pedstc12-<br>1026         Hybrid Switched-Capacitor 9-Level Boost Inverter         1440           Pedstc12-<br>1046         A Boost Switched-Capacitor Multilevel Inverter Using Quasi-Resonant         1442           Pedstc12-<br>1046         Design and Analysis of a New Multilevel Inverter with Reduced Number         1444           1047         of Switching Devices         1550           pedstc12-<br>1057         Modeling and Simulation of Dual Z-source based Hybrid 2/3 Level         1550           pedstc12-<br>1067         A Multilevel Converter Based on Cascaded Flying Cells with High         1552           pedstc12-<br>1067         Nested Neutral Point Clamped Converter Based DSTATCOM with         1544           1074         Mixed-Sequence Reactive Current Compensation Capability         1660           1083         An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter         1657           1127         Using Continuous Input-current Buck-Boost DC-DC Converter         1442           1127         Using Quasi Open-Loop Grid-Synchronization Technique         1557           pedstc12-<br>1160         Single Phase Active Power Filter Control Under Distorted Grid Voltage         1442           1127         Using Quasi Open-Loop Grid-Synchronization Technique         1557           pedstc12-<br>1160         Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | reless ]                  |  | 1                 |                                                                                                                        | 13:20-<br>13:40 |
| State         Provide Switched-Capacitor 9-Level Boost Inverter         14:2           pedstc12-         A Boost Switched-Capacitor Multilevel Inverter Using Quasi-Resonant         14:2           1046         Inductor         14:4           pedstc12-         Design and Analysis of a New Multilevel Inverter with Reduced Number         14:4           pedstc12-         Design and Analysis of a New Multilevel Inverter with Reduced Number         15:3           pedstc12-         Modeling and Simulation of Dual Z-source based Hybrid 2/3 Level         15:0           1057         Inverter         15:2           pedstc12-         A Multilevel Converter Based on Cascaded Flying Cells with High         15:2           1067         Modularity and Single DC-link per Phase         15:2           pedstc12-         Nested Neutral Point Clamped Converter Based DSTATCOM with         16:0           1074         Mixed-Sequence Reactive Current Compensation Capability         16:0           pedstc12-         An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter         16:0           1127         Using Continuous Input-current Buck-Boost DC-DC Converter         14:2           pedstc12-         Developed Experimental Analysis of Current THD of The CPV System         14:2           pedstc12-         Diag Continuous Input-current Buck-Boost DC-DC Converter         14:2 <th>Wii</th> <th></th> <td></td> <td></td> <td>13:40-<br/>14:00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wii                       |  |                   |                                                                                                                        | 13:40-<br>14:00 |
| Support         Inductor         14:4           pedstc12-<br>1047         Design and Analysis of a New Multilevel Inverter with Reduced Number<br>of Switching Devices         14:4           pedstc12-<br>1047         Design and Analysis of a New Multilevel Inverter with Reduced Number<br>of Switching Devices         14:4           pedstc12-<br>1057         Modeling and Simulation of Dual Z-source based Hybrid 2/3 Level<br>10:57         15:0           pedstc12-<br>pedstc12-         A Multilevel Converter Based on Cascaded Flying Cells with High<br>10:67         15:2           pedstc12-<br>pedstc12-         Nested Neutral Point Clamped Converter Based DSTATCOM with<br>10:74         15:4           pedstc12-<br>1083         An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter<br>10:03         16:0           pedstc12-<br>1083         Developed Experimental Analysis of Current THD of The CPV System<br>11:27         14:4           pedstc12-<br>pedstc12-<br>1160         Developed Experimental Analysis of Current THD of The CPV System<br>11:27         14:4           pedstc12-<br>pedstc12-<br>1160         Adapting Digital Twin Technology in Electric Railway Power Systems<br>14:2         14:4           pedstc12-<br>pedstc12-<br>1100         Design and Comparative Finite Element and Thermal Analysis of 1-Phase<br>15:0         15:0           pedstc12-<br>pedstc12-<br>1100         Design and Comparative Finite Element and Thermal Analysis of 1-Phase<br>15:0         15:3           pedstc12-<br>pedstc12-<br>1100         Compatibility of Present 3kV D                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |  |                   | Hybrid Switched-Capacitor 9-Level Boost Inverter                                                                       | 14:00-<br>14:20 |
| ViewPielstel 2-<br>1074Nested Neutral Point Champed Converter Based DSTATCOM with<br>Mixed-Sequence Reactive Current Compensation Capability15.41074Mixed-Sequence Reactive Current Compensation Capability16:0pedstc12-<br>1083An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter16:01127Developed Experimental Analysis of Current THD of The CPV System<br>112714:01127Using Continuous Input-current Buck-Boost DC-DC Converter14:21160Adapting Digital Twin Technology in Electric Railway Power Systems14:21150Using Quasi Open-Loop Grid-Synchronization Technique15:0pedstc12-<br>1100Design and Comparative Finite Element and Thermal Analysis of 1-Phase<br>Cylindrical Transformer for Low-Power Applications15:2pedstc12-<br>1103Compatibility of Present 3kV DC and 2×25 kV AC High-Speed Railway<br>Power Supply Systems Towards Future MVDC System15:4pedstc12-<br>1109Three-Phase Modular PFC Converter in Continuous Conduction Mode15:4pedstc12-<br>1068ZVT Flyback with an Active Auxiliary Circuit16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SJ                        |  |                   |                                                                                                                        | 14:20-<br>14:40 |
| ViewPielstel 2-<br>1074Nested Neutral Point Champed Converter Based DSTATCOM with<br>Mixed-Sequence Reactive Current Compensation Capability15.41074Mixed-Sequence Reactive Current Compensation Capability16:0pedstc12-<br>1083An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter16:01127Developed Experimental Analysis of Current THD of The CPV System<br>112714:01127Using Continuous Input-current Buck-Boost DC-DC Converter14:21160Adapting Digital Twin Technology in Electric Railway Power Systems14:21150Using Quasi Open-Loop Grid-Synchronization Technique15:0pedstc12-<br>1100Design and Comparative Finite Element and Thermal Analysis of 1-Phase<br>Cylindrical Transformer for Low-Power Applications15:2pedstc12-<br>1103Compatibility of Present 3kV DC and 2×25 kV AC High-Speed Railway<br>Power Supply Systems Towards Future MVDC System15:4pedstc12-<br>1109Three-Phase Modular PFC Converter in Continuous Conduction Mode15:4pedstc12-<br>1068ZVT Flyback with an Active Auxiliary Circuit16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nverte                    |  | 1                 |                                                                                                                        | 14:40-<br>15:00 |
| ViewPielstel 2-<br>1074Nested Neutral Point Champed Converter Based DSTATCOM with<br>Mixed-Sequence Reactive Current Compensation Capability15.41074Mixed-Sequence Reactive Current Compensation Capability16:0pedstc12-<br>1083An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter16:01127Developed Experimental Analysis of Current THD of The CPV System<br>112714:01127Using Continuous Input-current Buck-Boost DC-DC Converter14:21160Adapting Digital Twin Technology in Electric Railway Power Systems14:21150Using Quasi Open-Loop Grid-Synchronization Technique15:0pedstc12-<br>1100Design and Comparative Finite Element and Thermal Analysis of 1-Phase<br>Cylindrical Transformer for Low-Power Applications15:2pedstc12-<br>1103Compatibility of Present 3kV DC and 2×25 kV AC High-Speed Railway<br>Power Supply Systems Towards Future MVDC System15:4pedstc12-<br>1109Three-Phase Modular PFC Converter in Continuous Conduction Mode15:4pedstc12-<br>1068ZVT Flyback with an Active Auxiliary Circuit16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1<br>evel Iı             |  |                   | -                                                                                                                      | 15:00-<br>15:20 |
| Single Predster12-<br>1074Nested Neutral Point Champed Converter Based DSTATCOM with<br>Mixed-Sequence Reactive Current Compensation Capability15.41074Mixed-Sequence Reactive Current Compensation Capability16:0pedstc12-<br>1083An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter16:01083pedstc12-<br>1127Developed Experimental Analysis of Current THD of The CPV System<br>Using Continuous Input-current Buck-Boost DC-DC Converter14:01127Using Continuous Input-current Buck-Boost DC-DC Converter14:21160Adapting Digital Twin Technology in Electric Railway Power Systems14:21150Using Quasi Open-Loop Grid-Synchronization Technique15:0pedstc12-<br>1100Design and Comparative Finite Element and Thermal Analysis of 1-Phase<br>Cylindrical Transformer for Low-Power Applications15:21103Power Supply Systems Towards Future MVDC System15:4pedstc12-<br>1109Three-Phase Modular PFC Converter in Continuous Conduction Mode15:41109Edstc12-<br>1068ZVT Flyback with an Active Auxiliary Circuit16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [ulti-L                   |  |                   |                                                                                                                        | 15:20-<br>15:40 |
| ProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvideProvide <t< td=""><th>M</th><td></td><td></td><td>15:40-<br/>16:00</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M                         |  |                   |                                                                                                                        | 15:40-<br>16:00 |
| Image: Section of the section of th |                           |  |                   | An H-Bridge Based Switched-Capacitor Boost Multi-Level Inverter                                                        | 16:00-<br>16:20 |
| 1109     16:0       pedstc12-     2VT Flyback with an Active Auxiliary Circuit     16:0       1068     2VT Flyback with an Active Auxiliary Circuit     16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onic                      |  |                   |                                                                                                                        | 14:00-<br>14:20 |
| 1109     16:0       pedstc12-     2VT Flyback with an Active Auxiliary Circuit     16:0       1068     2VT Flyback with an Active Auxiliary Circuit     16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Electr                    |  | 1                 | Adapting Digital Twin Technology in Electric Railway Power Systems                                                     | 14:20-<br>14:40 |
| 1109     16:0       pedstc12-     2VT Flyback with an Active Auxiliary Circuit     16:0       1068     2VT Flyback with an Active Auxiliary Circuit     16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>'ower<br>erters      |  |                   |                                                                                                                        | 14:40-<br>15:00 |
| 1109     16:0       pedstc12-     2VT Flyback with an Active Auxiliary Circuit     16:0       1068     2VT Flyback with an Active Auxiliary Circuit     16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A<br>n of P<br>Conv       |  |                   |                                                                                                                        | 15:00-<br>15:20 |
| 1109     16:0       pedstc12-     2VT Flyback with an Active Auxiliary Circuit     16:0       1068     2VT Flyback with an Active Auxiliary Circuit     16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Applicatio                |  | -                 |                                                                                                                        | 15:20-<br>15:40 |
| 1068 ZVT Flyback with an Active Auxinary Circuit 16:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |  | -                 | Three-Phase Modular PFC Converter in Continuous Conduction Mode                                                        | 15:40-<br>16:00 |
| pedstc12-<br>1069 A Novel Zero Voltage Transition soft-switching PWM Boost Converter<br>1069 with low voltage stress 16:4<br>pedstc12- A Modular Two-Stage High Step-Down DC-DC Converter Using 16:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D3<br>DC-DC Converters    |  |                   | ZVT Flyback with an Active Auxiliary Circuit                                                                           | 16:00-<br>16:20 |
| pedstc12- A Modular Two-Stage High Step-Down DC-DC Converter Using 16:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |  |                   |                                                                                                                        | 16:20-<br>16:40 |
| A DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Do Converter OsingA DInternational Two Bage High Step Down Do Do Do Converter OsingA DInternational Two Bage High Step Down Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |  | pedstc12-<br>1072 | A Modular Two-Stage High Step-Down DC-DC Converter Using<br>Frequency Multiplier Circuit for Datacenter Applications   | 16:40-<br>17:00 |
| pedstc12-<br>1073 A Soft Switching Interleaved High Step-down Converter with low voltage<br>17:0<br>17:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |  | pedstc12-         | A Soft Switching Interleaved High Step-down Converter with low voltage                                                 | 17:00-<br>17:20 |
| pedstc12- A New Non-Isolated Single Switch High Step-up DC/DC Converter 17:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |  |                   |                                                                                                                        | 17:20-<br>17:40 |

#### 12<sup>th</sup> Annual Power Electronics, Drive Systems and Technologies (PEDSTC 2021)



|                                                        |  | pedstc12-<br>1090 | A New High Conversion Ratio Transformerless Buck-Boost Converter<br>with Continuous Input Current                                         | 17:40-<br>18:00 |
|--------------------------------------------------------|--|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| y                                                      |  | pedstc12-<br>1107 | Single Switch ZVS Transformerless Resonant High Step-up Converter                                                                         | 16:00-<br>16:20 |
| Energ                                                  |  | pedstc12-<br>1134 | A Hybrid Control Approach for LLC Resonant Converter                                                                                      | 16:20-<br>16:40 |
| ers and systems                                        |  | pedstc12-<br>1136 | Design and Analysis of an Isolated Single-Stage Resonant AC-DC<br>Converter with PFC                                                      | 16:40-<br>17:00 |
| R<br>Resonant Converters and Energy<br>Storage Systems |  | pedstc12-<br>1162 | A Novel SEPIC-Based Quasi-Resonant High Step-up DC/DC Converter<br>with Soft-Switching                                                    | 17:00-<br>17:20 |
|                                                        |  | pedstc12-<br>1092 | Estimation of CM Parasitic Capacitances in Front-end LLC Resonant DC-<br>DC Converters                                                    | 17:20-<br>17:40 |
|                                                        |  | pedstc12-<br>1108 | State-of-Charge Estimation of NMC-based Li-ion Battery Based on<br>Continuous Transfer Function Model and Extended Kalman Filter          | 17:40-<br>18:00 |
|                                                        |  | pedstc12-<br>1159 | Estimation of Batteries Voltages and Resistances in Modular Multilevel<br>Converter with Half-Bridge Modules Using Modified PSO Algorithm | 18:00-<br>18:20 |

## Day 3: Thursday, 4 Feb. 2021 (16 of Bahman 99)

|                                                 |        | Da                | y 3: Thursday, 4 February 2021 (16 of Bahman 1399)                                                                                                       |                 |
|-------------------------------------------------|--------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Session                                         | Chairs | Paper ID          | Title                                                                                                                                                    | Time            |
|                                                 |        | pedstc12-<br>1105 | A Common Ground Transformer-less High Gain DC-DC Buck-Boost<br>Converter                                                                                 | 8:00-<br>8:20   |
| ters                                            |        | pedstc12-<br>1112 | A Single Switch High Voltage Gain DC-DC Converter Based on Coupled<br>Inductor and Switched-Capacitor for Renewable Energy Systems                       | 8:20-<br>8:40   |
| 4<br>onver                                      |        | pedstc12-<br>1119 | A Non-isolated High Step-up Soft Switching DC to DC Converter with<br>Continues input Current and Low Switch Voltage Stress                              | 8:40-<br>9:00   |
| DC-DC Converters                                |        | pedstc12-<br>1125 | A Continuous Input Current DC-DC Converter Based on Coupled<br>Inductor for Renewable Energy Applications                                                | 9:00-<br>9:20   |
| DC                                              |        | pedstc12-<br>1129 | A Dual Switch/Inductor Isolated High Voltage Gain Based on Voltage<br>Lift                                                                               | 9:20-<br>9:40   |
|                                                 |        | pedstc12-<br>1144 | Analysis and Investigation of a Soft-Switched Synchronous Buck<br>Converter                                                                              | 9:40-<br>10:00  |
|                                                 |        | pedstc12-<br>1064 | A Study on Applying Interleaved Switching Pattern on a Double-<br>Input/Single-Output Zeta Converter                                                     | 8:00-<br>8:20   |
| tronic                                          |        | pedstc12-<br>1066 | Model-Free Predictive Combined Control for Three-Phase Grid<br>Connected Voltage Source Converters                                                       | 8:20-<br>8:40   |
| C2<br>Control of Power Electronic<br>Converters |        | pedstc12-<br>1081 | Virtual Voltage Vector Based Predictive Control of High Performance<br>Modified Quasi-Z-Source Inverter with the Aim of Constant Common-<br>Mode Voltage | 8:40-<br>9:00   |
| )<br>  of Po<br>Conv                            |        | pedstc12-<br>1084 | Voltage Balancing of Capacitors Using Kalman Filter in Modular<br>Multilevel Converters without Current Sensors                                          | 9:00-<br>9:20   |
| ontrol                                          |        | pedstc12-<br>1087 | Improved Indirect Model Predictive Control for Modular Multilevel<br>Converter                                                                           | 9:20-<br>9:40   |
| С                                               |        | pedstc12-<br>1095 | A Space Vector Modulation based Model Predictive Control for Low<br>Frequency Operation of Nested Piloted NPC                                            | 9:40-<br>10:00  |
| sı                                              |        | pedstc12-<br>1089 | Novel switched-capacitor-based multilevel inverter topology for<br>renewable energy                                                                      | 10:00-<br>10:20 |
| M2<br>Multi-Level Inverters                     |        | pedstc12-<br>1091 | A Thirteen-Level Flying Capacitor based Single-Phase Inverter with Self-<br>Balancing Capability                                                         | 10:20-<br>10:40 |
|                                                 |        | pedstc12-<br>1116 | Staircase Selective Harmonic Elimination in Multilevel Inverters to<br>Achieve Wide Output Voltage Range                                                 | 10:40-<br>11:00 |
| ulti-L                                          |        | pedstc12-<br>1152 | A Novel Boost Fifteen-Level Asymmetrical Flying-Capacitor Inverter<br>with Natural Balancing of Capacitor Voltages                                       | 11:00-<br>11:20 |
| Mı                                              |        | pedstc12-<br>1170 | A New Multilevel Inverter: An Attempt to Reduce Power Components                                                                                         | 11:20-<br>11:40 |

### 12<sup>th</sup> Annual Power Electronics, Drive Systems and Technologies (PEDSTC 2021)



|                                                     |  | pedstc12-<br>1181 | A Novel H-Type MLI with the reduction in Power Electronic Devices                                                                                                    | 11:40-<br>12:00 |
|-----------------------------------------------------|--|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                     |  | pedstc12-<br>1138 | A New Hybrid Three-Phase Multilevel Inverter Devoted to Electric Drive<br>with Constant Volt per Hertz Control                                                       | 12:00-<br>12:20 |
| c                                                   |  | pedstc12-<br>1128 | Harmonic Reduction by Voltage Reinjection Strategy in 12-Pulse VSI for<br>High Power Applications                                                                    | 10:00-<br>10:20 |
| A3<br>Application of Power Electronic<br>Converters |  | pedstc12-<br>1130 | Operation of the AC-AC Converter Based Dynamic Voltage Restorer in<br>Weak Distribution Systems                                                                      | 10:20-<br>10:40 |
| ver Eld<br>ters                                     |  | pedstc12-<br>1161 | A wide soft switching range Power factor correction Converter                                                                                                        | 10:40-<br>11:00 |
| A3<br>n of Power<br>Converters                      |  | pedstc12-<br>1167 | More Electric Aircraft Fault Current Protection: A Review                                                                                                            | 11:00-<br>11:20 |
| cation<br>C                                         |  | pedstc12-<br>1094 | Simple Innovative Method for Online Condition Monitoring of IGBTs in<br>Back-to-Back Converters                                                                      | 11:20-<br>11:40 |
| Appli                                               |  | pedstc12-<br>1133 | Examination and Comparison of Thyristor and Gate-Controlled Series<br>Capacitors Performance for the Voltage Stabilization of Sensitive Loads                        | 11:40-<br>12:00 |
| ves                                                 |  | pedstc12-<br>1145 | A New MPC-based Approach for Torque Ripple Reduction in BLDC<br>Motor Drive                                                                                          | 12:00-<br>12:20 |
| E3<br>Electric Machines and Drives                  |  | pedstc12-<br>1146 | Robust Torque control of induction motor using STSM control                                                                                                          | 12:20-<br>12:40 |
| E3<br>hines ar                                      |  | pedstc12-<br>1156 | Proposing an Effective Armature Winding for a Small DC Motor using<br>Sensitivity Analysis Based Algorithm                                                           | 12:40-<br>13:00 |
| E<br>Machi                                          |  | pedstc12-<br>1169 | A Comprehensive Analysis of a Complementary-Rotor Doubly Salient<br>Permanent Magnet Motor for High Torque Applications                                              | 13:00-<br>13:20 |
| ctric ]                                             |  | pedstc12-<br>1018 | Emulation of Direct-Drive Wind Energy Conversion Systems Based on<br>Permanent Magnet Synchronous Generators                                                         | 13:20-<br>13:40 |
| Ele                                                 |  | pedstc12-<br>1166 | A 9-Switch 3-Level VSI-Based MPSC of PMSM Without Weighting<br>Factors                                                                                               | 13:40-<br>14:00 |
|                                                     |  | pedstc12-<br>1155 | A Single-Switch Quadratic Boost with Stacked Zeta Converter                                                                                                          | 14:00-<br>14:20 |
| SIG                                                 |  | pedstc12-<br>1173 | A New High Step-Up DC-DC Converter Based on Impedance Network                                                                                                        | 14:20-<br>14:40 |
| D5<br>C-DC Converters                               |  | pedstc12-<br>1180 | A Two-Phase Hybrid Switched-Inductor DC-DC Converter with High<br>Voltage Conversion Ratio                                                                           | 14:40-<br>15:00 |
| D5<br>DC C0                                         |  | pedstc12-<br>1149 | Analysis of a High-efficient Step-Up Converter with ZVS Operation                                                                                                    | 15:00-<br>15:20 |
| DC-I                                                |  | pedstc12-<br>1005 | Hybrid Control for a Boost DC-DC Converter with Average Dwell Time                                                                                                   | 15:20-<br>15:40 |
|                                                     |  | pedstc12-<br>1135 | A Comprehensive Analysis and Modeling of The Bidirectional Three-<br>Level DC-DC Converter with Auxiliary Control Scheme for Balancing<br>Voltages of Its Capacitors | 15:40-<br>16:00 |
| 0                                                   |  | pedstc12-<br>1157 | A Hybrid SMC Strategy for Sequential Switching Shunt Regulator                                                                                                       | 14:00-<br>14:20 |
| C3<br>Control of Power Electronic<br>Converters     |  | pedstc12-<br>1143 | Convertor mechanism scheduling by type-2 fuzzy approach for<br>PV/battery/Fuel systems                                                                               | 14:20-<br>14:40 |
|                                                     |  | pedstc12-<br>1096 | Improvement of the Railway Power Flow Controller's Performance Using<br>Sliding Mode Control Method                                                                  | 14:40-<br>15:00 |
|                                                     |  | pedstc12-<br>1118 | Hamiltonian Energy-Based Sliding Mode Control Approach for a Multi-<br>port Bidirectional EV Charger via Zero Dynamic                                                | 15:00-<br>15:20 |
|                                                     |  | pedstc12-<br>1158 | DC Voltage Drop Compensation in Automotive Drives by Finite Set<br>Model Predictive Control                                                                          | 15:20-<br>15:40 |
|                                                     |  | pedstc12-<br>1124 | Performance Improvement of Photovoltaic Emulator Using Lambert W<br>Model and Fractional Order PI Controller                                                         | 15:40-<br>16:00 |